Search results

1 – 10 of 56
Article
Publication date: 1 February 1990

C. Majorana, A. Natali and R. Vitaliani

The aim of the present work is to describe a numerical approach to the analysis of three‐dimensional reinforced concrete structures subject to prestressing. The finite element…

Abstract

The aim of the present work is to describe a numerical approach to the analysis of three‐dimensional reinforced concrete structures subject to prestressing. The finite element approach developed is described, with particular regard to the configuration of finite elements in relation to numerical model generation. An elasto‐viscoplastic material law is adopted. The non‐linear formulation is discussed, pointing out theoretical and numerical aspects. The computational examples, carried out using a specially developed code, aim at illustrating the characteristic aspects of the proposed approach.

Details

Engineering Computations, vol. 7 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 November 2002

Bernhard A. Schrefler, Carmelo E. Majorana, Gabriel A. Khoury and Dariusz Gawin

This paper presents the physical, mathematical and numerical models forming the main structure of the numerical analysis of the thermal, hydral and mechanical behaviour of normal…

2502

Abstract

This paper presents the physical, mathematical and numerical models forming the main structure of the numerical analysis of the thermal, hydral and mechanical behaviour of normal, high‐performance concrete (HPC) and ultra‐high performance concrete (UHPC) structures subjected to heating. A fully coupled non‐linear formulation is designed to predict the behaviour, and potential for spalling, of heated concrete structures for fire and nuclear reactor applications. The physical model is described in more detail, with emphasis being placed upon the real processes occurring in concrete during heating based on tests carried out in several major laboratories around Europe as part of the wider high temperature concrete (HITECO) research programme. A number of experimental and modelling advances are presented in this paper. The stress‐strain behaviour of concrete in direct tension, determined experimentally, is input into the model. The hitherto unknown micro‐structural, hydral and mechanical behaviour of HPC/UHPC were determined experimentally and the information is also built into the model. Two examples of computer simulations concerning experimental validation of the model, i.e. temperature and gas pressure development in a radiatively heated HPC wall and hydro‐thermal and mechanical (damage) performance of a square HPC column during fire, are presented and discussed in the context of full scale fire tests done within the HITECO research programme.

Details

Engineering Computations, vol. 19 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 September 1999

C.E. Majorana and C. Pellegrino

The aim of this paper is to find the regions of dynamic stability of systems of beams and frames with finite displacements and rotations. A suitable numerical procedure allows…

Abstract

The aim of this paper is to find the regions of dynamic stability of systems of beams and frames with finite displacements and rotations. A suitable numerical procedure allows regions of dynamic stability to be obtained for any value of the dynamic force, taking into account the different characteristics of constraints, inertia and stiffness. A set of numerical applications is presented to show the capabilities of the proposed numerical method in the frame of the dynamic stability of beams.

Details

Engineering Computations, vol. 16 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 March 2011

C.E. Majorana and B. Pomaro

The purpose of this paper is to show how to find the regions of dynamic instability of a beam axially loaded and visco‐elastically constrained at its ends by Kelvin‐Voigt…

Abstract

Purpose

The purpose of this paper is to show how to find the regions of dynamic instability of a beam axially loaded and visco‐elastically constrained at its ends by Kelvin‐Voigt translational and rotational units variously arranged according to different configurations, by using the equation of boundary frequencies.

Design/methodology/approach

With respect to visco‐elasticity the time variable is present as a parameter so that the above‐mentioned exact approach is exploited to draw three‐dimensional diagrams of the dynamic component of the periodic load and its frequency, varying with time and with the viscosity parameter μ characterizing the restraints.

Findings

For not rigidly constrained configurations a peculiar asymptotic tendency is recognizable in both cases.

Research limitations/implications

The study allows for identifying the influence of visco‐elastic restraints in the response of a beam under a dynamic axial load. Dynamic excitation occurs in several fields of mechanics: dynamic loads are encountered in structural systems subjected to seismic action, aircraft structures under the load of a turbulent flow and industrial machines whose components transmit time‐dependant forces.

Practical implications

Visco‐elasticity accounts for possible vibration control solutions planned to improve the dynamic response of the rod; they can consist of layers of visco‐elastic material within the body of the modelled element or local viscous instruments affecting the boundary conditions; the latter is the application this paper focuses on.

Originality/value

With this paper a calculation procedure to get an exact solution for particular static configurations of the beam is followed in order to define the influence of visco‐elastic restraints under a dynamic axial load; the responses are given in terms of boundary frequencies domains and are supposed to be useful to learn the behaviour in time and in dependence of the intrinsic viscosity of the restraints.

Details

Engineering Computations, vol. 28 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 July 2013

Giovanna Xotta, Valentina A. Salomoni and Carmelo E. Majorana

Knowledge of the behavior of concrete at mesoscale level requires, as a fundamental aspect, to characterize aggregates and specifically, their thermal properties if fire hazards…

Abstract

Purpose

Knowledge of the behavior of concrete at mesoscale level requires, as a fundamental aspect, to characterize aggregates and specifically, their thermal properties if fire hazards (e.g. spalling) are accounted for. The assessment of aggregates performance (and, correspondingly, concrete materials made of aggregates, cement paste and ITZ – interfacial transition zone) is crucial for defining a realistic structural response as well as damage scenarios.

Design/methodology/approach

It is here assumed that concrete creep is associated to cement paste only and that creep obeys to the B3 model proposed by Bažant and Baweja since it shows good compatibility with experimental results and it is properly justified theoretically.

Findings

First, the three‐dimensionality of the geometric description of concrete at the meso‐level can be appreciated; then, creep of cement paste and ITZ allows to incorporate in the model the complex reality of creep, which is not only a matter of fluid flow and pressure dissipation but also the result of chemical‐physical reactions; again, the description of concrete as a composite material, in connection with porous media analysis, allows for understanding the hygro‐thermal and mechanical response of concrete, e.g. hygral barriers due to the presence of aggregates can be seen only at this modelling level. Finally, from the mechanical viewpoint, the remarkable damage peak effect arising from the inclusion of ITZ, if compared with the less pronounced peak when ITZ is disregarded from the analysis, is reported.

Originality/value

The fully coupled 3D F.E. code NEWCON3D has been adopted to perform fully coupled thermo‐hygro‐mechanical meso‐scale analyses of concrete characterized by aggregates of various types and various thermal properties. The 3D approach allows for differentiating each constituent (cement paste, aggregate and ITZ), even from the point of view of their rheologic behaviour. Additionally, model B3 has been upgraded by the calculation of the effective humidity state when evaluating drying creep, instead than using approximate expressions. Damage maps allows for defining an appropriate concrete mixture to withstand spalling and to characterize the coupled behaviour of ITZ as well.

Article
Publication date: 1 January 1993

A. MAJORANA and G. RUSSO

Two hydrodynamic models of a semiconductor device are considered. The first takes into account thermal and collisional effects, while neglecting viscous terms, which are included…

Abstract

Two hydrodynamic models of a semiconductor device are considered. The first takes into account thermal and collisional effects, while neglecting viscous terms, which are included in the second. A qualitative analysis of stationary one‐dimensional solutions is performed and a numerical comparison is presented.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 12 no. 1
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 24 July 2007

Valentina A. Salomoni, Gianluca Mazzucco and Carmelo E. Majorana

This paper seeks to analyse 3D growing concrete structures taking into account the phenomenon of body accretion, necessary for the simulation of the construction sequence, and…

Abstract

Purpose

This paper seeks to analyse 3D growing concrete structures taking into account the phenomenon of body accretion, necessary for the simulation of the construction sequence, and carbon dioxide attack.

Design/methodology/approach

A typical 3D segmental bridge made of precast concrete is studied through a fully coupled thermo‐hygro‐mechanical F.E. model. The durability of the bridge is evaluated and carbonation effects are considered. Creep, relaxation and shrinkage effects are included according to the theory developed in the 1970s by Bažant for concretes and geomaterials; the fluid phases are considered as a unique mixture which interacts with a solid phase. The porous material is modelled using n Maxwell elements in parallel (Maxwell‐chain model).

Findings

First, calibration analyses are developed to check the VISCO3D model capabilities for predicting carbonation phenomena within concrete and the full 3D structure is modelled to further assess the durability of the bridge under severe conditions of CO2 attack.

Originality/value

The adopted numerical model accounts for the strong coupling mechanisms of CO2 diffusion in the gas phase, moisture and heat transfer, CaCO3 formation and the availability of Ca(OH)2 in the pore solution due to its transport by water movement. Additionally, the phenomenon of a sequential construction is studied and numerically reproduced by a sequence of “births” for the 3D finite elements discretizing the bridge. The fully coupled model is here extended to 3D problems for accreting bodies (as segmental bridges) in order to gather the effects of multi‐dimensional attacks of carbon dioxide for such structures.

Details

Engineering Computations, vol. 24 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 September 2008

Valentina A. Salomoni, Carmelo E. Majorana, Giuseppe M. Giannuzzi and Adio Miliozzi

The purpose of this paper is to describe an experience of R&D in the field of new technologies for solar energy exploitation within the Italian context. Concentrated solar power…

1238

Abstract

Purpose

The purpose of this paper is to describe an experience of R&D in the field of new technologies for solar energy exploitation within the Italian context. Concentrated solar power systems operating in the field of medium temperatures are the main research objectives, directed towards the development of a new and low‐cost technology to concentrate the direct radiation and efficiently convert solar energy into high‐temperature heat.

Design/methodology/approach

A multi‐tank sensible‐heat storage system is proposed for storing thermal energy, with a two‐tanks molten salt system. In the present paper, the typology of a below‐grade cone shape storage is taken up, in combination with nitrate molten salts at 565°C maximum temperature, using an innovative high‐performance concrete for structures absolving functions of containment and foundation.

Findings

Concrete durability in terms of prolonged thermal loads is assessed. The interaction between the hot tank and the surrounding environment (ground) is considered. The developed FE model simulates the whole domain, and a fixed heat source of 100°C is assigned to the internal concrete surface. The development of the thermal and hygral fronts within the tank thickness are analysed and results discussed for long‐term scenarios.

Originality/value

Within the medium temperature field, an innovative approach is here presented for the conceptual design of liquid salts concrete storage systems. The adopted numerical model accounts for the strong coupling among moisture and heat transfer and the mechanical field. The basic mathematical model is a single fluid phase non‐linear diffusion one based on the theory by Bažant; appropriate thermodynamic and constitutive relationships are supplemented to enhance the approach and catch the effects of different fluid phases (liquid plus gas).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 7/8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 January 2011

Valentina Salomoni, Gianluca Mazzucco, Carlo Pellegrino and Carmelo Majorana

The purpose of this paper is to investigate the bond behaviour between fiber reinforced polymer (FRP) sheets and concrete elements, starting from available experimental evidences…

1589

Abstract

Purpose

The purpose of this paper is to investigate the bond behaviour between fiber reinforced polymer (FRP) sheets and concrete elements, starting from available experimental evidences, through a calibrated and upgraded 3D mathematical‐numerical model.

Design/methodology/approach

The complex mechanism of debonding/peeling failure of FRP reinforcement is studied within the context of damage mechanics to appropriately catch transversal effects and developing a more realistic and comprehensive study of the delamination process. The FE ABAQUS© code has been supplemented with a numerical procedure accounting for Mazars's damage law inside the contact algorithm.

Findings

It has been shown that such an approach is able to catch the delamination evolution during loading processes as well.

Originality/value

A Drucker‐Prager constitutive law is adopted for concrete whereas FRP elements are assumed to behave in a linear‐elastic manner, possibly undertaking large strains/displacements. Surface‐to‐surface contact conditions have been applied between FRP and adjacent concrete, including the enhancement given by the strain‐softening law according to Mazars' damage model. The procedure has been introduced to describe the coupled behaviour between concrete, FRP and adhesive resulting in specific bonding‐debonding features under different load levels.

Details

Engineering Computations, vol. 28 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 November 1997

C.E. Majorana and C. Pellegrino

Finds the regions of dynamic instability of elastic beams constrained at the ends by means of translational and rotational elastic springs, using the equation of boundary…

Abstract

Finds the regions of dynamic instability of elastic beams constrained at the ends by means of translational and rotational elastic springs, using the equation of boundary frequencies. Obtains the diagrams showing the regions of instability of the beam, as a function of the dynamic component of the periodic forcing function and its frequency, from that equation in exact form. In this procedure inertial, stiffness and constraint characteristics of the examined system are taken into account. Presents selected applications concerning the analysed problem.

Details

Engineering Computations, vol. 14 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 56